Mathématiques

Question

démontrer que (n²+n) est pair​

1 Réponse

  • Si n est pair (c'est-à-dire qu'il existe un entier k tel que n = 2k) alors n² est pair donc n² + n est pair.
    Si n est impair (c'est-à-dire qu'il existe un entier k tel que n = 2k + 1) alors n² est impair (car n² = 2(2k² + 2k)+1) donc n² + n est pair. Donc, pour tout n ∈ N, n² + n est pair.

Autres questions